Multilinear Fourier Multipliers with Minimal Sobolev Regularity

نویسنده

  • Hanh Van Nguyen
چکیده

Letm be a positive integer. In this talk, we will introduce optimal conditions,expressed in terms of Sobolev spaces, on m-linear Fourier multiplier operatorsto be bounded from a product of Lebesgue or Hardy spaces to Lebesgue spaces.Our results are sharp and cover the bilinear case (m = 2) obtained by Miyachiand Tomita [1]. References[1] Miyachi A., and Tomita N., Minimal smoothness conditions for bilinearFourier multipliers. Rev. Mat. Iberoamer. 29 (2013), no. 2, 495–530.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilinear Fourier Multipliers with Minimal Sobolev Regularity, I

We find optimal conditions on m-linear Fourier multipliers to give rise to bounded operators from a product of Hardy spaces Hj , 0 < pj ≤ 1, to Lebesgue spaces Lp. The conditions we obtain are necessary and sufficient for boundedness and are expressed in terms of L2-based Sobolev spaces. Our results extend those obtained in the linear case (m = 1) by Calderón and Torchinsky [1] and in the bilin...

متن کامل

The bilinear Bochner-Riesz problem

Motivated by the problem of spherical summability of products of Fourier series, we study the boundedness of the bilinear Bochner-Riesz multipliers (1 − |ξ| − |η|)+ and we make some advances in this investigation. We obtain an optimal result concerning the boundedness of these means from L × L into L with minimal smoothness, i.e., any δ > 0, and we obtain estimates for other pairs of spaces for...

متن کامل

Compactly Supported, Piecewise Polyharmonic Radial Functions with Prescribed Regularity

A compactly supported radially symmetric function Φ : R → R is said to have Sobolev regularity k if there exist constants B ≥ A > 0 such that the Fourier transform of Φ satisfies A(1 + ‖ω‖) ≤ b Φ(ω) ≤ B(1 + ‖ω‖), ω ∈ R. Such functions are useful in radial basis function methods because the resulting native space will correspond to the Sobolev space W k 2 (R). For even dimensions d and integers ...

متن کامل

Almost Critical Well-posedness for Nonlinear Wave Equations with Qμν Null Forms in 2d

In this paper we prove an optimal local well-posedness result for the 1+2 dimensional system of nonlinear wave equations (NLW) with quadratic null-form derivative nonlinearities Qμν . The Cauchy problem for these equations is known to be ill-posed for data in the Sobolev space H with s ≤ 5/4 for all the basic null-forms, except Q0, thus leaving a gap to the critical regularity of sc = 1. Follow...

متن کامل

IF Approximation of Fourier Transforms and Certain Interpolating Splines

We extend to iP, X g p < °°, the L2 results of Bramble and Hilbert on convergence of discrete Fourier transforms and on approximation using smooth splines. The main tools are the estimates of [ 1 ] for linear functionals on Sobolev spaces and elementary results on Fourier multipliers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014